

A Summary Index of Prediction Accuracy for Censored Time to Event Data

Yan Yuan, PhD School of Public Health, University of Alberta June 5, 2018 Montreal

Joint work with Michelle Zhou et al.

Outline

- Motivation
- Measures for evaluating prediction performance of risk scores
- Estimator and simulation
- Data analysis
- Summary and future work

Examples of Prevention and Early Detection in Clinical Practice

- The Prism risk tool (for re-hospitalization within a year)
- Risk charts for 182 countries to predict future risk of cardiovascular disease
- Multiple risk score systems (n>40) for diabetes risk in general population
- Risk prediction models for acute kidney injury in critically ill patients (2018)

Risk Score as a Screening Tool

- Typical condition that risk scores are used/ developed for have the following characteristics
 - seriousness may result in a high risk of mortality or significantly affect the quality of life;
 - early detection/intervention can make a difference in disease prognosis;
 - the event rate is low

Motivating Data

- Late effects of cancer treatments in childhood cancer survivors – e.g. Congestive heart failure (Chow et al. 2015, Journal of Clinical Oncology)
- Cumulative risk of CHF is ~3% by 35 years post diagnosis

SCHOOL OF PUBLIC HEALTH

Prediction Performance Measure

Columbia University Mailman School of Public Health

Evaluating Model Performance when Predicting Low Prevalence Events

- Threshold Dependent Measure (predictor needs to be binary)
 - Misclassification rate
 - Sensitivity (TPF): P(test positive | diseased) = $P(\hat{Y} = 1 | Y = 1)$
 - Specificity (FPF): P(test negative | healthy) = $P(\hat{Y} = 0 | Y = 0)$
 - Positive Predictive value (PPV): $P(Y = 1|\hat{Y} = 1)$
 - Negative Predictive Value (NPV): $P(Y = 0 | \hat{Y} = 0)$

When predictor is continuous or ordinal

UNIVERSITY OF ALBERTA SCHOOL OF PUBLIC HEALTH

Threshold-free Summary Measure

• Area Under the ROC* Curve (AUC, *aROC*)

AUC
$$\equiv \int_{R} \text{TPF}(z) d\text{FPF}(z)$$

- Extension to event status to accommodate censoring and time to event data -- AUC_{t_0}
- Criticisms of AUC as a measure for risk prediction
 - Retrospective measure
 - Insensitive
 - Over-optimistic

A Threshold-free Alternative to AUC for Binary Outcome

• Average Positive predictive value (AP)

$$AP \equiv \int_{R} PPV(z)dTPF(z)$$

Remark:

- Range: $[\pi, 1]$ where π is the prevalence rate and corresponds to a random risk score

Yuan et al. (2015) Frontiers in Public Health 3:57.

ROC curve PvR curve

Relationship to AUC

- When two risk scores U_1 and U_2 are compared
 - If ROC curve of U₁ dominates that of U₂ everywhere, the AUC₁ > AUC₂ and AP₁ > AP₂
 - If ROC curves of U_1 and U_2 crosses, the ranking of U_1 and U_2 based on of AUC and AP can differ.

Su et al. (2015) Proceedings of the 2015 International Conference on Theory of Information Retrieval. pp.349-352.

An Alternative to AUC_{t_0} for Time-toevent Outcome

• Time-dependent Average Positive predictive value (AP_{t_0})

$$AP_{t_0} = \int_{\mathcal{R}} PPV_{t_0}(z) dTPF_{t_0}(z)$$

Nonparametric Estimator for Survival Status

Let (X, δ, Z) be the standard survival time notation, X: the censored event time, δ : the censoring indicator Z: the risk score

$$\widehat{AP}_{t_0} = \frac{\sum_{j=1}^n I(X_j \le t_0) \widehat{w}_{t_0,j} \widehat{PPV}_{t_0}(Z_j)}{\sum_{j=1}^n I(X_j \le t_0) \widehat{w}_{t_0,j}}.$$

where

$$\widehat{w}_{t_0,i} = \frac{I(X_i < t_0)\delta_i}{\widehat{\mathcal{G}}(X_i)} + \frac{I(X_i \ge t_0)}{\widehat{\mathcal{G}}(t_0)}$$

$$\widehat{PPV}_{t_0}(z) = \frac{\sum_{i=1}^{n} \widehat{w}_{t_0,i} I(Z_i \ge z) I(X_i < t_0)}{\sum_{i=1}^{n} I(Z_i \ge z)}$$

Simulation Study

 $\log(T_i) = 7.2 - 1.1U_{i1} - 2.5U_{i2} - 1.5log(U_{i1}^2) + \epsilon_T,$

Sis JC TH

Results (n=2000)

	Event rate	Risk score	AP AUC					
t_0			TRUE	BIAS	ESE	ASE^{b}	$ECOVP^{b}(\%)$	TRUE
0.5	0.0101	U_1	0.182	0.0361	0.0806	0.0794	92.2	0.920
		U_2	0.124	0.0339	0.0687	0.0679	94.1	0.904
		Δ	0.058	0.0251	0.102	0.116	96.1	0.016
		Ratio	1.47	0.4820	1.470	1.740	92.4	1.02
8	0.0495	U_1	0.364	0.0085	0.0508	0.0499	94.4	0.841
		U_2	0.266	0.0121	0.0435	0.0439	94.8	0.848
		Δ	0.098	-0.0028	0.0707	0.072	96.3	-0.007
		Ratio	1.37	0.0123	0.310	0.322	95.8	0.99
36	0.0991	U_1	0.462	0.0060	0.0416	0.0431	94.2	0.786
		U_2	0.375	0.0074	0.0387	0.0393	96.3	0.824
		Δ	0.087	-0.0045	0.0655	0.0633	95.7	-0.038
		Ratio	1.23	-0.0010	0.189	0.187	94.5	0.95

Results (n=5000)

to	Event rate	t rate Risk score	AP AUC					
<i>v</i> 0	Event face		TRUE	BIAS	ESE	ASE^{b}	$ECOVP^{b}(\%)$	TRUE
0.5	0.0101	U_1	0.182	0.0185	0.0498	0.0503	93.6	0.920
		U_2	0.124	0.0154	0.0415	0.0415	93.6	0.904
		Δ	0.058	0.0056	0.0696	0.0712	94.2	0.016
		Ratio	1.47	0.1490	0.709	0.756	92.9	1.02
8	0.0495	U_1	0.364	0.0041	0.0327	0.0324	94.0	0.841
		U_2	0.266	0.0043	0.0285	0.0280	95.5	0.848
		Δ	0.098	-0.0005	0.0473	0.0460	96.3	-0.007
		Ratio	1.37	0.0099	0.209	0.204	94.5	0.99
36	0.0991	U_1	0.462	0.0023	0.0273	0.0275	95.0	0.786
		U_2	0.375	0.0015	0.0247	0.0251	95.5	0.824
		Δ	0.087	0.0003	0.0398	0.0402	95.1	-0.038
		Ratio	1.23	0.0058	0.117	0.120	95.0	0.95

 $\mathsf{PPV}_{t_0}^{\mathsf{CHF}}(z) = \Pr\{T < t_0, \Delta = 1 \mid Z \ge z\} \text{ and } \mathsf{TPF}_{t_0}^{\mathsf{CHF}}(z) = \Pr\{Z \ge z \mid T < t_0, \Delta = 1\}.$

$$\widehat{\text{PPV}}_{t_0}^{\text{CHF}}(z) = \frac{\sum_{i=1}^n \widehat{w}_{t_0,i} I(Z_i \ge z) I(X_i < t_0) I(\Delta_i = 1)}{\sum_{i=1}^n I(Z_i \ge z)}$$

$$\widehat{\text{TPF}}_{t_0}^{\text{CHF}}(z) = \frac{\sum_{i=1}^n \widehat{w}_{t_0,i} I(Z_i \ge z) I(X_i < t_0) I(\Delta_i = 1)}{\sum_{i=1}^n \widehat{w}_{t_0,i} I(X_i < t_0) I(\Delta_i = 1)}$$

UNIVERSITY OF ALBERTA SCHOOL OF PUBLIC HEALTH 25/33

 $AP_{t_0} vs.t_0$

 $AUC_{t_0}vs.t_0$

1.08

1.02

0.98

15

20

25

30

35

HEALTH

rAUC₆

UNIVERSITY OF ALBERTA SCHOOL OF PUBLIC HEALTH

Comparison

t_0	Event rate	Risk score system	APCHF	AUCCHF
20 years	0.0120	Simple	0.037 (0.028, 0.051)	0.786 (0.746, 0.824)
		Heart dose	0.072 (0.047, 0.120)	0.820 (0.780, 0.859)
		Δ	0.035 (0.015, 0.077)	0.035(0.013, 0.056)
		Ratio	1.95 (1.42, 2.90)	1.04 (1.02, 1.07)
35 years	0.0440	Simple	0.073 (0.062, 0.088)	0.812 (0.778, 0.846)
		Heart dose	0.107 (0.088, 0.135)	0.820 (0.784, 0.856)
		Δ	0.034(0.020, 0.055)	0.008 (-0.016, 0.029)
		Ratio	1.46 (1.26, 1.71)	1.01 (0.98, 1.04)

Summary

- Point and interval estimators of AP for binary outcome (ordinal risk score);
- Nonparametric estimator of AP_{t_0} for censored event status and in the presence of competing risks (continuous risk score);
- Inference procedure to compare AP_{t_0} for two risk scores;
- APtools: an R package for binary and survival time data.

Discussion

- AP is a <u>single numerical measure</u>, in this respect it is similar to AUC.
- A summary measure of positive predictive value, better suited in comparing prospective prediction performance of competing risk scores
- More sensitive than AUC as illustrated by the data analysis
- Event rate dependent, AP should be estimated in a prospective cohort or population-based study

Future Work

- To evaluate how sensitive and robust the AP is as a measure of prediction accuracy Partial AP
- To extend the AP for evaluation of multicategory outcomes
- Partial AP

Acknowledgement

Collaborators

Students

- Dr. Qian Michelle Zhou Doris Li
- Dr. Eric Chow

Hengrui Cai

• Dr. Greg Armstrong

